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1 Introduction

Little Higgs (LH) models offer an alternative to the standard model in which no fundamen-

tal scalars need be introduced (for reviews see [1]). Generally, in LH models the Higgs is

a composite particle, bound by interactions that become strong at a scale Λ. The mass of

the Higgs is much less than Λ as the Higgs is a pseudo-Goldstone boson (PGB) of broken

global symmetries in the theory of the new strong interaction.

The global “flavor” symmetry Gf of these models has a subgroup Gw that is weakly

gauged. In the absence of this weak gauge force, the flavor symmetry is broken sponta-

neously to a subgroup H due to hyper-strong interactions at the scale Λ. As a result, there

are massless Goldstone bosons that are coordinates on the Gf/H coset space. Since the

weakly gauged Gw force breaks the flavor symmetry explicitly, including its effects leads to

some of the Goldstone bosons (the would-be Goldstone bosons) being eaten by the Higgs

mechanism and the rest becoming PGBs acquiring small masses of order Λ times a small

symmetry breaking parameter, the weak gauge coupling constant. The Higgs is the lightest

PGB in LH models, and its mass is naturally much less than Λ (and the other PGBs): due

to the collective symmetry breaking mechanism its mass arises only at two loops.

Additional interactions must be included in LH models to account for quark and lepton

masses. At low energies they reproduce the Yukawa couplings of the standard model.

Since these interactions also break the flavor symmetry, they contribute to the masses

of the PGBs. In order to ensure that the Higgs remains much lighter than Λ, the quark

interactions are designed to implement the collective symmetry breaking mechanism again.

In the littlest higgs [2] model (L2H) and variants a collective symmetry arises naturally

in the gauge sector. Turning off some gauge couplings gives an enlarged symmetry group
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of the Lagrangian. This ensures that when those couplings are turned off the higgs remains

an exact Goldstone boson. The implementation of the collective symmetry in the Yukawa

couplings that give rise to the top quark mass is somewhat different. For example, in the

L2H the top-quark doublet is combined with a new quark singlet into a ‘triplet’ of collective

SU(3) symmetry. However, this is not automatically a symmetry of the Lagrangian, as it is

not respected by gauge interactions. In other words, the couplings of the doublet and the

singlet are a priori independent, but need to be equal in order to implement the collective

symmetry mechanism. In this paper we investigate whether it is possible to construct a

littlest higgs model for which collective symmetry in the top-quark sector arises naturally.

If one used generic couplings in the L2H model for the doublet and the singlet of the top

quark ‘triplet’, then loop diagrams induce unsuppressed, order Λ/4π, Higgs masses. Such

generic couplings are not forbidden by any symmetry. As we will see, even if the coupling of

the ‘triplet’ is taken to respect the collective SU(3) symmetry at tree level, radiative effects

split it into two terms. These, in fact, have different anomalous dimensions (they ‘run’

differently). The reader can view enforcing collective symmetry in the top quark sector as

a fine tuning. Alternatively, one may argue that assuming the symmetry is consistent with

the littlest higgs approach. Only an explicit UV completion can validate one view over the

other. We will not investigate UV completions in this work, but enquire whether specific

models avoid the issue.

Cannot collective symmetry arise naturally by gauging it? After all, if the symmetry

is gauged then the restricted form of the quark coupling is a result of the gauge symmetry.

For example one may construct a model based on Gf/H = U(7)/O(7) with Gw = SU(3)×

SU(2) × U(1)3. The vacuum aligns [3] so that Gw breaks to the electroweak subgroup

SU(2)×U(1) at the scale Λ, and the spectrum has a light Higgs doublet plus many heavier

PGBs. Could the gauged SU(3) now play the role of the collective symmetry for the top

quark mass? The problem with this is that the gauge symmetry is broken and the would

be higgs is eaten. This model is higgsless. This is also generic: the collective symmetry

must act nonlinearly on the higgs, and therefore it must be broken. Gauging it eats away

the higgs.

In section 2 we review and explain the problem in the L2H model. The L2H itself is

phenomenologically disfavoured [5] by EWPD, and it is for this reason that alternatives, like

models with custodial symmetry [6] or with T-parity [7], have been introduced. Rather than

investigating these models individually we show in section 3 that the problem is generic.

We first give a very explicit proof for models with SU(N)/SO(N) (and SU(N)/Sp(N))

vacuum manifold. We then generalize, which does not require much additional work. A

brief recap is in section 4.

2 Top-quark coupling fine tuning in the Littlest Higgs Model

2.1 Model review

To establish notation we briefly review elements of the L2H [2]. It has Gf = SU(5),

H = SO(5) and Gw =
∏

i=1,2 SU(2)i × U(1)i. Symmetry breaking SU(5) → SO(5) is
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characterized by the Goldstone boson decay constant f . The embedding of Gw in Gf is

fixed by taking the generators of SU(2)1 and SU(2)2 to be

Qa
1 =

(

1
2τa 02×3

03×2 03×3

)

and Qa
2 =

(

03×3 03×2

02×3 −1
2τa∗

)

(2.1)

and the generators of the U(1)1 and U(1)2

Y1 =
1

10
diag(3, 3,−2,−2,−2) and Y2 =

1

10
diag(2, 2, 2,−3,−3). (2.2)

The vacuum manifold is characterized by a unitary, symmetric 5 × 5 matrix Σ. We

denote by gi (g′i) the gauge couplings associated with SU(2)i (U(1)i). If one sets g1 = g′1 = 0

the model has an exact global SU(3) symmetry (acting on the upper 3 × 3 block of Σ),

while for g2 = g′2 = 0 it has a different exact global SU(3) symmetry (acting on the lower

3× 3 block). Either of these exact global SU(3) would-be symmetries guarantee the Higgs

remains exactly massless. Hence, the Higgs mass should vanish for either g1 = g′1 = 0 or

g2 = g′2 = 0. The perturbative quadratically divergent correction to the Higgs mass must

be polynomial in the couplings and can involve only one of the couplings at one loop order.

Hence it must vanish at one loop. This is the collective symmetry mechanism that ensures

the absence of 1-loop quadratic divergences in the higgs mass.

It is standard to introduce the top quark so that the collective symmetry argument

still applies. The third generation doublet qL is a doublet under SU(2)1 and a singlet under

SU(2)2. Introduce additional SU(2)1 × SU(2)2-singlet spinor fields: qR, uL and uR. The

third generation right handed singlet is a linear combination of uR and qR. The charges of

these under U(1) × U(1) are listed below, in (2.15). Their couplings are taken to be

Ltop = −
1

2
λ1 f χ̄Li ǫ

ijk ǫxy Σjx Σky qR − λ2 f ūL uR + h.c. (2.3)

where the indexes i, j, k run over 1,2,3, the indexes x, y over 4, 5 and the triplet χL is

χL =

(

iτ2qL

uL

)

. (2.4)

The collective symmetry argument now runs as follows. If λ2 = 0 then Ltop in (2.3)

is constructed so that it exhibits an explicit global SU(3) symmetry, a subgroup of Gf =

SU(5). Under this, the fields χL in (2.4) and Σix transform as triplets (on i = 1, 2, 3). Since

this would-be exact global symmetry is spontaneously broken it guarantees that the Higgs

field remains an exactly massless Goldstone boson. Similarly, if λ1 = 0 then there is no

coupling of the quarks to the Goldstone bosons, which therefore remain massless. Hence,

the mass term must vanish as either λ1 or λ2 are set to zero, and since the quadratic

divergence is polynomial in the couplings, it can only arise at two loops.

The gauge and top-quark interactions generate an effective, Coleman-Weinberg poten-

tial which determines the vacuum orientation. If the gauge couplings are strong enough [8],

g′21 + g2
1 >

2Nc

3π2c
λ2

1 λ2
2

[

ln

(

Λ2

(λ2
1 + λ2

2)f
2

)

+
ĉ′

2

]

. (2.5)
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where c and ĉ′ are unknown dynamical constants of order unity, the vacuum alignment is

Σew =







0 0 12×2

0 1 0

12×2 0 0






. (2.6)

leading to the gauge-symmetry breaking into the electroweak subgroup,
∏

i=1,2 SU(2)i ×

U(1)i → SU(2) × U(1).

2.2 The hidden fine tuning

As we just saw, the top quark Lagrangian Ltop in (2.3) is constructed so that it exhibits

an explicit global SU(3) symmetry. However, this is a symmetry of the Lagrangian only

for λ2 = g1 = g′1 = 0.

There is in fact no symmetry reason for the fields in χL to combine into a triplet.

Given that the effective Lagrangian is restricted only by the non-linear realization of the

symmetry (by parametrizing Gf/H) and by the requirement of explicit gauge invariance

under Gw, the coupling in (2.3) is more generally of the form

Ltop = −λ1f q̄ i
L ǫxyΣixΣ3yqR −

1

2
λ′

1fūLǫ3jkǫxyΣjxΣkyqR − λ2fūLuR + h.c. (2.7)

Only when λ′
1 = λ1 (and λ2 = g1 = g′1 = 0) do we recover the global SU(3) symmetry of

the collective symmetry mechanism. The main observation of this work is that the relation

λ′
1 = λ1, assumed throughout the little higgs literature, is unnatural. We refer to this as

the hidden fine tuning problem. The reader may choose not to see this as a problem, that

assuming collective symmetry in the Yukawa sector at tree level is in line with the littlest

higgs approach. Only an explicit UV completion can validate one view over the other.

Although λ′
1 = λ1 is natural in the absence of the gauge interactions, these are already

present in the UV completion. Below we comment in slightly more detail on how radiative

effects explicitly introduce SU(3) breaking into the Yukawa couplings.

It should be evident that for λ′
1 6= λ1 the collective symmetry argument is spoiled. A

straightforward computation gives a quadratically divergent correction to the higgs mass,

δm2
h =

12

16π2
(λ2

1 − λ′2
1 )Λ2 (2.8)

where Λ is a UV cut-off. The severity of the fine tuning can now be explored. If we insist

that the Higgs mass should be naturally of order of 100 GeV, while Λ ∼ 10 TeV, then, not

surprisingly, λ′
1 − λ1 . (4πmh/Λ)2 ∼ 1%.

The Lagrangian in (2.7) is not the most general one consistent with symmetries to

lowest order in the chiral expansion. If SU(3) were a good symmetry one could add to the

Lagrangian a term of the form

χ̄Liǫjklǫxy(Σ
∗)ij(Σ∗)kx(Σ∗)lyqR (2.9)

One can also freely replace qR ↔ uR in eqs. (2.3) and (2.9), and then, of course, split each

SU(3) invariant term into a sum of SU(2) × U(1) invariant terms. There is no reason a

priori why these terms should be ignored, but they are not dangerous. In fact, they are

inevitable, as they are generated radiatively, many of them already at one loop [9].
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Figure 1. Feynman diagram that contributes to the renormalization of the Yukawa couplings λ1

and λ′

1
. The wavy line represents a gauge boson of U(1)1 and the solid and doted lines a spinor

and a PGB, respectively.

2.3 Radiatively induced λ′
1 6= λ1

Imposing λ′
1 − λ1 = 0 is not only a fine tuning, it is unnatural. Since the symmetry is

broken by marginal operators, the renormalization group evolution of the difference λ′
1−λ1

takes it away from zero, even if it is chosen to be zero at some arbitrary renormalization

point µ.

As a check we have computed explicitly the one loop renormalization group equations

for these couplings (see figure 1):

µ
∂

∂µ
ln

(

λ1

λ′
1

)

=
(

2
3 − y

) 3g′21
16π2

(2.10)

Here y is the charge of qR under U(1)2. Details of the calculation will be presented

elsewhere [9]. If βg′
1

= (b/16π2)g′31 then we can write the solution in terms of the

running coupling:

λ1(µ)

λ′
1(µ)

=
λ1(Λ)

λ′
1(Λ)

(

g′1(µ)

g′1(Λ)

)
2−3y

b

(2.11)

The numerical value for b can be obtained from the standard QED beta function

(see [10])

b =
2

3

∑

Weyl fermion

Y 2
1i +

1

6

∑

real scalar

Y 2
1i (2.12)

To compute this, we need to introduce the Yukawa-type coupling for all the other standard

model quarks. We will follow Perelstein [1] by noting that there is no need for imple-

menting collective symmetry breaking for the other standard model quarks due to their

small Yukawa couplings. Thus the other “up” type quarks Yukawa interaction can be

introduced by

− λu
αf q̄ i

αLǫxyΣixΣ3yqαR (2.13)

where α = 1, 2 is the quark family index. Similarly the other “down” type quark interac-

tions can be introduced by

− λd
αf q̄ i

αLǫxy(Σ
∗)ix(Σ∗)3ydαR (2.14)
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here α = 1, 2, 3. If we take Y2(qR) = y, then the Y1 charge of all the particles involved are

qαL qαR dαR uL uR H φ

Y1
11
30 − y 2

3 − y 1
15 − y 13

15 − y 13
15 − y 1/4 1/2

Y2 y − 1
5 y y − 2

5 y − 1
5 y − 1

5 1/4 1/2

(2.15)

Thus we get b = 1
360

(

2737 − 8832y + 10080y2
)

≥ 46/105. However, we note that the y can

be arbitrary.

We do not dwell on the numerics, since there are too many adjustable parameters (the

choice of y, the value of U(1) couplings and λ1,2(Λ) which however must satisfy (2.5), the

value of the cutoff Λ). We simply note that 1/16π2 log(Λ/mh) ∼ 1/16π2 log(100) ∼ 3%.

Hence, even fine tuning λ1(Λ) = λ′
1(Λ) generically produces a difference λ1(mh) − λ′

1(mh)

in excess of 1%.

Note also that the same behavior must occur in the UV completion of the L2H model.

After all, the terms in the Lagrangian that break Gf -symmetry model the effects of symme-

try breaking interactions at short distances, that is, in the UV completion. The interactions

in the UV completion that are responsible for the quark Yukawa couplings cannot be taken

to respect the SU(3) symmetry required for the collective symmetry argument. The break-

ing of the SU(3) symmetry in the UV completion is naturally much larger than in (2.11)

since neither the U(1)1 gauge coupling nor the Yukawa couplings are asymptotically free.

3 A no-go theorem

In this section we show the impossibility of constructing a theory that implements without

fine tuning the collective symmetry mechanism on the terms responsible for quark and

lepton masses. Let us begin by stating in general terms what is required in order to

implement the collective symmetry mechanism. Any given term in the Lagrangian has

to be symmetric under a subgroup Gc of the flavor group Gf under which the higgs field

transforms non-linearly, and in particular, with a transformation that includes a constant

shift.1 In addition, there must not be any one loop divergent radiative corrections that

involve the coupling constants for two different terms.

Of course there are additional requirements on each individual term in the Lagrangian.

In particular any one term must be invariant under Gw, the gauged subgroup of Gf .

We do not wish to specify this gauge group, since one could look for realizations of the

collective symmetry mechanism in gauge groups other than the one of the L2H. Below

we will only need to use the fact that this group contains the electroweak gauge group,

Gew = SU(2) × U(1), that this symmetry is linearly realized, i.e., that Gew ⊂ H so it

remains unbroken at the scale at which Gf breaks to H, and that the higgs field must

transform as a doublet with hypercharge 1/2 under the electroweak group.

The hidden fine tuning problem in the quark sector of the L2H resulted from the fact

that Gc = SU(3) is not a symmetry of the Yukawa term, because Gc does not commute

1Different terms in the Lagrangian may be invariant under different collective symmetry groups Gc.
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with Gw. The Yukawa term in the Lagrangian is actually a sum of terms that are separately

invariant under the gauge group and the collection of terms can only be symmetric under

Gc by fine tuning the separate coupling constants at one scale. There are two ways that

immediately come to mind in which one could try to extend the L2H model to get around

this problem. Either extend the gauge group so that Gc itself is gauged or obtain Gc as

an accidental symmetry. These, or other strategies cannot work: below we will prove in

generality that the collective symmetry mechanism cannot work for terms other than the

kinetic terms in the Lagrangian.

3.1 An SU(7)/SO(7) example and its generalization to SU(N)/SO(N)

It is simpler to understand the general case by first looking at an explicit example. We can

motivate this by the following observation. If the SU(3) collective symmetry that acts on

the first three rows and columns of Σ is elevated to a gauge symmetry, then the equality

λ′
1 = λ1 is natural. Of course, in the L2H model this won’t work because the SU(3) is

broken at the scale Λ at which SU(5) breaks to SO(5), and the higgs is eaten at this scale.

But perhaps one can construct a theory based on a larger Gf symmetry group with SU(3)

gauged and the higgs still transforming non-linearly under some Gc subgroup of Gf .

For example, one may consider a nonlinear sigma model based on Gf/H = U(7)/O(7)

(with spinor fields in non-trivial representations of the hyper-strong gauge group so that

the U(1) in U(7) = SU(7) × U(1) is non-anomalous). Assume the U(7) is broken to

O(7) by a symmetric condensate, which transforms under U(7) as Σ → V ΣV T . Now

gauge a Gw = SU(3) × SU(2) × U(1)3 subgroup of U(7). The SU(3) factor is precisely the

gauged version of the top-block collective symmetry group, under which the royal triplet χL

transforms as an actual triplet. It is a straightforward, if lengthy, exercise to show that the

vacuum aligns correctly, that is, Gw breaks to the electroweak subgroup. One can identify

Πi4, and related entries, with the higgs doublet. By suitably choosing the generators of

the gauged U(1)3 symmetry one finds that the higgs field is the only light PGB.

Now introduce top quark couplings in a manner consistent with the collective symmetry

and without fine tuning of Yukawa couplings. Just as in the L2H model, in addition to the

third generation quark doublet qL and singlet qR, introduce a pair of weak singlet Weyl

fermions uL and uR that transform as 11/6 under SU(2)W × U(1)Y . The singlet uL is

combined with the doublet qL into a triplet of the gauged SU(3), precisely as in (2.4). By

suitably choosing the transformation properties under the U(1)3 we can ensure that the

most general Yukawa Lagrangian consistent with the symmetries, to lowest order in the

chiral expansion, is

Ltop = −fλ1χ̄Li(Σ
∗)i4qR −

1

2
fλ2χ̄Liǫ

ijkǫxyΣjxΣkyuR + h.c. (3.1)

where the indexes i, j, k run over 1, 2, 3 and x, y over 5, 6. The problem with this model is

that the SU(3) symmetry does not protect the higgs. The collective symmetry required is

an SU(4) acting on the top-left 4 × 4 block of Σ. This in turn requires enlarging the true

triplet to a four-plet, which allows for more terms in the Lagrangian, which are related by

the U(4) symmetry. However, this is not a good symmetry of the Lagrangian and the added

– 7 –
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terms are related to the ones above only by imposing unnaturally a collective symmetry.

This is precisely the same problem we encountered with the L2H.

Let us generalize this to models with SU(N)/SO(N) vacuum manifold, parametrized

by the N × N symmetric unitary matrix Σ. We assume there is an SU(2) × U(1) gauged

subgroup of SO(N). Without loss of generality we can take its embedding in SU(N)

as follows:

Qa =
1

2







τa 02×(N−4) 02×2

0(N−4)×2 0(N−4)×(N−4) 0(N−4)×2

02×2 02×(N−4) −τa∗







Y =
1

2
diag(1, 1, y3, . . . , yN−2,−1,−1)

(3.2)

with
∑

yi = 0. We assume further that the whatever other interactions exist they align the

vacuum along (2.6) (with the proper interpretation for the dimensions of the 0 blocks and

the center unit block). Then, as usual, Σ = exp(iΠ/f)Σew exp(iΠT /f) = exp(2iΠ/f)Σew,

where in the last step we have chosen the broken generators to satisfy ΠΣew = ΣewΠT .

The N − 4 doublets Πix with i = 1, 2 and x = 3, . . . , N − 2, have hypercharge 1/2 + yx. So

any one of these for which yx = 0 is a prospective higgs doublet.

Under an infinitesimal SU(N) transformation, 1+iǫaT a, the matrix of goldstone bosons

transforms as

δΠ =
f

2
(T a + ΣewT aT Σ†

ew) + · · · (3.3)

where the ellipses stand for terms at least linear in the fields. We are interested in finding a

subgroup Gc of SU(N) under which the higgs field transformation includes a constant shift.

However any such transformation does not commute with SU(2) × U(1). Without loss of

generality we assume that the third entry has zero hypercharge, y3 = 0, so that Πi3 = Π∗
3i =

Π(N−2)i = Π∗
i(N−2) is the prospective higgs doublet. Then Gc must contain generators

X =







02×2 x2×1 02×(N−3)

x†
1×2 01×1 01×(N−3)

0(N−3)×2 0(N−3)×1 0(N−3)×(N−3)






(3.4)

or

X =







0(N−3)×(N−3) 0(N−3)×1 0(N−3)×2

01×(N−3) 01×1 xT
1×2

02×(N−3) x∗
2×1 02×2






(3.5)

with x a complex two component vector. Both of these give the same linear shift on the

prospective higgs field, as can be verified by computing X + ΣewXT Σ†
ew. It follows that

for either one of these generators we have

[Qa,X] = X ′ (3.6)

where X ′ is a generator of the form of X. This means that the X generators transform

under SU(2) as a tensor operator; they are in fact complex doublets with hypercharge 1/2,

just like the higgs. Now, there are additional generators in Gc: at the very least it contains

– 8 –
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the SU(3) subgroup generated by the top-left or bottom right 3 × 3 blocks. Together, X

and these additional generators transform as a reducible representation of the electroweak

subgroup. It follows that a gauge invariant term in the Lagrangian that is also invariant

under Gc is a sum of terms that are individually gauge invariant. The only exception

is when the term is constructed of fields that are separately SU(2) invariant, as is the

case of the λ2 mass term, in (2.3), in the L2H model. But it is unnatural to choose the

coefficients of these various terms to make their sum Gc invariant. This is because the

gauge interactions always break the symmetry. Gauge boson exchange Feynman diagrams

like that of figure 1 give divergent corrections to these couplings, and the corrections do

not preserve the Gc invariance.

We can relax one assumption above slightly. We do not need to assume the vacuum

alignment Σew is along (2.6). In order to have a collective symmetry argument that one

can already apply in the gauge sector one needs the first and last two rows and columns

to be as in (2.6). But the central (N − 4) × (N − 4) block does not have to be a diagonal

matrix, only a unitary, symmetric matrix. However, the argument goes through as before:

the components of Π that we identify with the higgs are changed in precisely the way that

the shifts in (3.3) are modified and the rest of the argument goes through unchanged.

The explicit proof for the case Gf/H = SU(N)/Sp(N) is completely analogous.

3.2 The general case

We turn now to the general case. We assume that Gw contains the electroweak gauge

group Gew = SU(2) × U(1), with Gew ⊂ H. We further assume that a subset of goldstone

bosons can be identified with the higgs field. We consider a term in the Lagrangian that is

both symmetric under Gew and has a collective symmetry Gc. We show in the appendix

that we only need to consider semi-simple Gc, which we assume henceforth.

That the higgs transforms linearly under the electroweak gauge group means that there

is a doublet h in Π that transforms as

δǫh = iǫa τa

2
h + iǫ

1

2
h (3.7)

under SU(2) × U(1). Under a group Gc ∈ Gf h transforms non-linearly,

δηh = ηmxm + · · · (3.8)

where the implicit sum over m is over all generators in Gc, for some two component complex

vectors xm and the ellipses stand for terms at least linear in h. One can redefine the basis

of generators in Gc so that xm = 0 for m ≥ 5 and xm for m = 1, · · · , 4 are unit vectors,

with m = 1, 3 real and m = 2, 4 purely imaginary. Now consider the commutator,

(δηδǫ − δǫδη)h = iǫaηm τa

2
xm + iǫηm 1

2
xm + · · · (3.9)

The commutator is again a non-linear transformation, a linear combination of the same

four generators in Gc that shift the higgs. In terms of the Lie algebra of Gf , denoting these
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generators by Xi, with2 i = 1, 2 and the generators of Gew by Qa and Y , we read off

[Qa,Xi] =
i

2
(τa)ijXj , [Y,Xi] =

i

2
Xi (3.10)

This is precisely the statement in eq. (3.6), derived there from the explicit form of matrices,

that the generators transform as tensors of Gew with the same quantum numbers as the

higgs doublet, but we see now that it holds more generally, independently of those explicit

matrix representations.

Since there is no semi-simple Lie algebra of rank 4, there must be additional genera-

tors, and [Xi,Xj ] must give some of these additional generators. Denote a non-vanishing

commutator by X̂ij = [Xi,Xj ]. Using the Jacobi identity we see that

[Qa, X̂ij ] = [Qa, [Xi,Xj ]] (3.11)

= [Xi, [Qa,Xj ]] − [Xj , [Qa,Xi]] (3.12)

=
i

2
(σa)jkXik −

i

2
(σa)ikXjk (3.13)

So these generators also satisfy an equation like (3.6) but transform in a representation in

the tensor product of two doublets. Continuing this way, considering commutators of the

generators we have so far, we can eventually generate the complete Lie algebra and find

that it breaks into sectors classified by irreducible representations under Gew.

We can use this to show that invariants under Gc break into a sum of terms separately

invariant under Gew. Any non-trivial invariant must be a product of two combination of

fields, one transforming in some irreducible representation R of Gc and the other as the

complex conjugate R̄. But from the previous paragraph it follows that under Gew the

representation R breaks into a direct sum R = r1 ⊕ r2 ⊕ · · · of at least two irreducible

representations of Gew. Therefore the product R × R̄, contains the sum of at least two

invariants under Gew, r1 × r̄1 and r2 × r̄2. Since Gc is not a symmetry of the theory

(because the kinetic energy term for the goldstone bosons is not invariant), the two (or

more) Gew invariants can be summed into a Gc invariant only by fine tuning coefficients

in the Lagrangian. This completes the argument.

It may not be self-evident that any non-trivial representation of Gc breaks into two

or more representations under Gew. This can be shown by noting that the roots of the

Lie algebra, that is the weights of the adjoint representation, of Gc break into a sum of

irreducible representations of Gew, precisely the same representations that the generators

fall into.3 Then by following the same procedure as in establishing branching rules for

representations of Lie algebras, that is, introducing projection operators in weight space,

and using the fact that the roots form irreducible representations, one obtains that every

representation of Gc is decomposed into a sum of irreducible representations of Gew.

2The index i runs over 1,2 because the hermitian matrices break into a symmetric and an antisymmetric

part, corresponding to the two real and two imaginary components of xm, and also to the real and imagnary

components of the higgs doublet.
3This follows form considering the standard map T A → |T A〉 of the generators of Gf , with T A|T B〉 =

|[T A, T B]〉. Then Qa|Xi〉 = i/2(σa)ij |Xj〉 and so on for the other generators of Gc.
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We remarked above that U(1) factors in Gc are ignored. This requires some expla-

nation. After all, one could conceivably take the four broken generators to generate a

collective symmetry group of dimension 4, say U(1)4 or SU(2) × U(1). But the U(1) sym-

metries do not help insure the higgs remains massless. It is easy to see why by considering

first the familiar L2H case. The λ1 and λ′
1 terms of (2.7) that need to be related by collec-

tive symmetry to obtain necessary cancellations in one loop graphs can be made separately

invariant under several U(1) symmetries. In fact, the situation is reversed from the semi-

simple group case, where a representation R of Gc is a direct sum of at least two irreducible

representation of Gew. Since the irreducible representations of U(1) are one dimensional,

it is Gew that relates several irreducible representation of U(1), and forces them together

into a term in the Lagrangian.

4 Conclusions

It is easy to see that radiative effects break the collective symmetry of top quark couplings

of the L2H model. These effects must also be present in the underlying UV completion

so they cannot be dismissed as small. Also, they are generically too large for successful

phenomenology even if one chooses to enforce collective symmetry on the tree level top

Yukawa couplings.

The problem cannot be circumvented by enlarging the model to one with a larger

underlying flavor symmetry group. Gauging collective symmetry is not an option: it either

gives a higgsless model or again requires imposing an unnatural symmetry at tree level to

avoid quadratically divergent radiative corrections to the higgs mass. The reader may see

this as a fine tuning problem, or may adopt the view that imposing the collective symmetry

on the top quark sector is in keeping with the littlest higgs strategy.

We have shown that the collective symmetry argument cannot be implemented natu-

rally on the Yukawa couplings of little higgs models. Of course, no-go theorems are only

as good as its assumptions. We did not prove that no model exists that can both include

top quarks and solve the little hierarchy problem. For example, one can presumably par-

tially supersymmetrize the model to ensure the cancellation of top loop induced quadratic

mass divergences, at least at one loop. In the absence of a novel mechanism to suppress

the quadratic divergences in the top quark-induced radiative corrections to the higgs mass

without fine tuning, it seems one must rely on a UV completion to explain the approximate

collective symmetry of the model.

A Proof that Gc is semi-simple

We show that the four generators Xi in Gc that produce the non-linear transformations of

the four real components of the higgs field are in a subalgebra that generates a semi-simple

subgroup of Gc.

Our starting point are the commutation relations

[Qa,Xi] = R(Qa)ijXj , [Y,Xi] = R(Y )ijXj . (A.1)
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These are part of the algebra of Gf . We recall some basic facts about compact Lie algebras

(we follow and use the notation of ref. [11]). The Cartan subalgebra of Gf is the largest set

of mutually commuting generators Hi, i = 1, . . . , r ≡ rank(Gf ). In the adjoint representa-

tion define a vector space by the map TA → |TA〉, where the TA are generators of Gf , and

define the action of generators on this vectors by TA|TB〉 = |[TA, TB ]〉. Moreover, define

an inner product on this space by 〈TA|TB〉 = Tr(TA†TB). Since the Hi are mutually com-

muting one can find a basis of the vector space Hi|Eα〉 = αi|Eα〉. The states correspond

to the rest of the generators, Eα. It follows that [Hi, Eα] = αiEα and E−α = E†
α. Choose

the generators of the Cartan subalgebra to satisfy 〈Hi|Hj〉 = δij . It can be shown

[Eα, E−α] =
r
∑

i=1

αiHi (A.2)

We intend to show that there is a basis of of Cartan generators for which the four Xi (or

a linear combination of them) correspond to two pairs (Eα, E−α) that therefore do not

commute among themselves.

We are free to take H1 = Q3 and H2 = Y as the first two members of the Cartan

subalgebra. Now, the standard representation

R(Y ) =

(

−τ2/2 0

0 −τ2/2

)

, R(Q3) =

(

−τ2/2 0

0 τ2/2

)

, (A.3)

R(Q1) =

(

0 −τ2/2

−τ2/2 0

)

, R(Q2) =

(

0 −i/212×2

i/212×2 0

)

, (A.4)

and we can make a transformation Xi → U ijXj to diagonalize R(Q3) and R(Y ):

[Y,X1] = −
1

2
X1

[Y,X2] = +
1

2
X2

[Y,X3] = −
1

2
X3

[Y,X4] = +
1

2
X4

[Q3,X1] = −
1

2
X1

[Q3,X2] = +
1

2
X2

[Q3,X3] = +
1

2
X3

[Q3,X4] = −
1

2
X4

(A.5)

The rest of the Cartan subalgebra can be chosen to commute with Xi, as we now show.

Suppose

[Hi,X
1] = −

ai

2
X1

[Hi,X
2] = +

ai

2
X2

[Hi,X
3] = −

bi

2
X3

[Hi,X
4] = +

bi

2
X4

(A.6)

Then the generators H ′
i = Hi − (ai + bi)/2 Y − (ai − bi)/2 Q3, commute with Xj .
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Now, it is clear the the four |Xi〉 are among the states |Eα′〉 that satisfy H ′
i|Eα′〉 =

α′
i|Eα′〉. Moreover the vectors α′ for Xi are of the form (±1

2 ,±1
2 , 0, . . . , 0). Equation (A.2)

holds only provided the Hi that satisfy Tr(HiHj) = δij . While the Hi satisfy this or-

thonormality condition, the new basis H ′
i generally does not. Writing Hi = VijH

′
j gives an

explicit set of eigenvectors of Hi,

Hi|Eα′〉 = VijH
′
j|Eα′〉 = Vijα

′
j |Eα′〉

The eigenvectors are the same as those of H ′
i, and hence the |Xj〉 are still among them, but

the eigenvalues have changed, αi = Vijα
′
j. But with this basis we can use (A.2). Explicitly

[X1,X2] = −
1

2

r
∑

i=1

(Vi1 + Vi2)Hi (A.7)

[X3,X4] = −
1

2

r
∑

i=1

(−Vi1 + Vi2)Hi (A.8)

We see that both commutators are non-vanishing, as we set out to demonstrate.
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C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a little Higgs,

Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [SPIRES];

J.L. Hewett, F.J. Petriello and T.G. Rizzo, Constraining the littlest Higgs,

JHEP 10 (2003) 062 [hep-ph/0211218] [SPIRES];

– 13 –

http://dx.doi.org/10.1146/annurev.nucl.55.090704.151502
http://arxiv.org/abs/hep-ph/0502182
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0502182
http://dx.doi.org/10.1016/j.ppnp.2006.04.001
http://arxiv.org/abs/hep-ph/0512128
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0512128
http://dx.doi.org/10.1016/j.crhy.2006.12.003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CRPOB,8,1029
http://dx.doi.org/10.1088/1126-6708/2002/07/034
http://arxiv.org/abs/hep-ph/0206021
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0206021
http://dx.doi.org/10.1016/0550-3213(81)90265-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B177,21
http://dx.doi.org/10.1016/0550-3213(80)90051-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B175,197
http://dx.doi.org/10.1103/PhysRevD.69.075002
http://arxiv.org/abs/hep-ph/0310039
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0310039
http://dx.doi.org/10.1103/PhysRevD.67.095004
http://arxiv.org/abs/hep-ph/0301040
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0301040
http://dx.doi.org/10.1103/PhysRevD.67.115002
http://arxiv.org/abs/hep-ph/0211124
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0211124
http://dx.doi.org/10.1088/1126-6708/2003/10/062
http://arxiv.org/abs/hep-ph/0211218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0211218


J
H
E
P
0
9
(
2
0
0
9
)
0
4
0
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